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Abstract 
 

In a Grid computing environment, resources are 

shared among a large number of applications. Brokers 

and schedulers find matching resources and schedule the 

execution of the applications by monitoring dynamic 

resource availability and employing policies such as first-

come-first-served and back-filling. To support 

applications with timeliness requirements in such an 

environment, brokering and scheduling algorithms must 

address an additional problem - they must be able to 

estimate the execution time of the application on the 

currently available resources. In this paper, we present a 

modeling approach to estimating the execution time of 

long-running scientific applications. The modeling 

approach we propose is generic; models can be 

constructed by merely observing the application 

execution “externally” without using intrusive techniques 

such as code inspection or instrumentation. The model is 

cross-platform; it enables prediction without the need for 

the application to be profiled first on the target hardware. 

To show the feasibility and effectiveness of this approach, 

we developed a resource usage model that estimates the 

execution time of a weather forecasting application in a 

multi-cluster Grid computing environment. We validated 

the model through extensive benchmarking and profiling 

experiments and observed prediction errors that were 

within 10% of the measured values. Based on our initial 

experience, we believe that our approach can be used to 

model the execution time of other time-sensitive scientific 

applications; thereby, enabling the development of more 

intelligent brokering and scheduling algorithms. 

 

1. Introduction 
 

A Grid computing environment provides a shared 

resource infrastructure for a large number of applications. 

Entities such as brokers and schedulers decide how 

resources get partitioned among the set of applications. 

Typical policies employed by these entities include back-

filling, first-come-first-served, etc. and are based on 

dynamically monitoring application resource usage 

behavior. While such policies work reasonably well to 

balance application resource requirements across physical 

resources and ensure high resource utilization, they fall 

short when the scheduling task involves meeting task-

specific execution deadlines. To address timeliness 

requirements, brokers and schedulers must be able to 

estimate the execution time of the application on the 

currently available resources in order to ensure that 

scheduling decisions do not lead to deadline violations. 

Extensive research exists in the area of resource usage 

and execution time prediction. A large section of this 

work focuses on platform-specific approaches [1,2,3,4,5], 

which does not support resource usage prediction on 

previously "unseen" target execution environments and 

very few of these approaches address performance 

prediction across different hardware configurations. This 

is important since the set of available resources on the 

Grid could have an arbitrary configuration. Some 

approaches that do provide support for cross-platform 

prediction of resource usage such as [6] and [7] are either 

application specific or restricted to predicting for single-

node application executions alone. Other approaches are 

intrusive in that they call for application source or binary 

instrumentation.  

Our approach differs from the other works in several 

respects. First, our approach is application agnostic and 

does not require application source or binary code 

inspection or instrumentation. Second, unlike some 

previous approaches, our approach does not require a 

sample execution on the target platform before prediction. 

Third, our approach is able to model execution scale, 

thereby also addressing distributed applications; 

especially, it allows prediction in a multi-cluster Grid 

computing environment. 

A key contribution of our approach is the generality of 

our application resource usage model, which is a direct 

result of constructing the model by merely observing the 

application execution "externally" (i.e., observing its 

resource usage rather than inspecting or instrumenting its 

code). This allows a system design and implementation 

that is completely oblivious of the semantics of the target 

application. The advantage of such an application-

agnostic approach is more appreciated when application 

semantics are complex, the source-code is not available, 

or there is no documentation. The WRF (Weather 

Research and Forecasting) application is an example of a 
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time-sensitive, resource-intensive, distributed application 

with a complex codebase and little to no documentation.
1
 

We use it to demonstrate the effectiveness of our approach 

through the rest of the paper. Once a cross-platform 

application model is built, predicting the execution time 

on a different hardware configuration simply involves 

populating the correct values for individual resources of 

the new platform. 

The proposed model estimates the application 

execution time based on application resource usage 

behavior. We note that the application execution time may 

be dependent on the specific configuration of several 

resource types. We started with a simple first step 

assumption that the influence of a single resource on the 

execution time of the application is independent from the 

influences of the other resources. We concede that this 

assumption may not be valid and some resource 

correlations may influence application execution time and 

intend to relax this assumption in future extensions of this 

work. We shall demonstrate, even with the simplistic 

assumption, that the model we developed is fairly 

extensive, capable of incorporating multiple resources and 

multi-node application executions. 

The effectiveness of our approach was tested by 

developing a model for predicting the execution time of 

WRF in a multi-cluster environment. Several experiments 

were done to validate the model. An error rate of less than 

10% was observed, which leads us to believe that the 

model is a viable option for developing timeliness 

enhancements to brokering and scheduling applications 

that take into account the dynamic resource availability of 

target execution environments. It is worth pointing out 

that we have applied the model proposed in this paper to 

other applications with substantially different resource 

consumption characteristics and have found it to be 

effective [8]. 

The rest of this paper is organized as follows. In 

Section 2, we describe the general approach taken by our 

model, including the parameters we are modeling. In 

Section 3, we introduce the mathematical model being 

evaluated. Section 4 describes the software artifacts that 

we developed for implementing our modeling and 

prediction mechanisms. This section also describes how 

this software was used to carry out our experiments to 

evaluate the model. Section 5 shows the results obtained 

from the experiments. Section 6 describes how the model 

was validated, based on the accuracy of the results 

obtained. Section 7 provides a more in-depth look at 

related research (compared to that which has already been 

covered above). Finally, in Section 8, we summarize the 

paper and provide some future research directions. 

                                                 
1
 Several of such applications exist in the domain of scientific 

computing and elsewhere. Ironically, these applications are also 

often mission-critical. 

2. Approach to Modeling Resource Usage 
 

Modeling the resource usage of a distributed 

application must take into account several aspects of the 

computational environment. In this section we overview 

our approach to modeling the static resource properties of 

the target execution platform and execution-specific 

factors affecting resource usage such as the degree of 

parallelism. Model construction is formally addressed in 

Section 3. 

To construct our model, we build upon our initial work 

on modeling single-node application execution [ 8 ].  

Following the philosophy of the original approach, we 

construct the model to be application-agnostic (as 

opposed to application-specific).  While profiling using 

source-code instrumentation (an application-specific 

approach) can provide valuable insight into application 

behavior that is typically unavailable with external 

observation, our application-agnostic approach provides 

generality in the modeling, profiling, and prediction 

mechanisms. Consequently, this enables a system design 

and implementation that is completely oblivious of the 

semantics of the target application. The latter is especially 

important when application semantics are either complex, 

or are unknown, or if the source-code is unavailable. 
 

2.1 Modeling the Resources 
 

Resource properties of the execution platform fall into 

the three basic categories of computation, communication, 

and storage. The key computational resources that affect 

execution time include the CPU clock speed, L2 cache 

size, and the front-side-bus (FSB) bandwidth. 

Communication parameters include the maximum 

bandwidth and latency of the network interconnection, 

while storage parameters include the main memory size 

and memory access bandwidth, as well as sequential and 

random disk I/O bandwidths.  

While the above set of parameters may seem excessive, 

we point out that the significant parameters of the model 

that affect the performance of a specific application is 

typically a subset. Our modeling technique automatically 

identifies these parameters; the remaining parameters are 

typically eliminated from the model with sufficient 

evidence. In the rest of this paper, however, we restrict 

our WRF model to a subset of computation resources by 

modeling the CPU clock speed and the number of nodes, 

and ignore the influence of other resource properties for 

the sake of simplicity of exposition. 

 

2.2 Modeling Execution Parallelism 
 

When modeling parallel and distributed applications 

(as is typical for scientific applications), the two critical 

parameters to address are platform heterogeneity and 

execution scale.  
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In our current model, we assume that all the nodes in 

the target execution environment are identical, i.e. that 

they have identical individual resource characteristics of 

computation, communication, and storage.  While we 

realize that this may not apply to all distributed 

environments, it is effective in addressing typical cluster 

environments. More importantly, it allows us to construct 

a practically usable model of the system. Relaxing this 

assumption to accommodate heterogeneous clusters is an 

important direction for future work.  

We address execution scale by including in our model 

a parameter associated with the number of processors 

utilized during execution. For simplicity, our model 

currently makes no distinction between shared and 

distributed memory processors (e.g., SMP and Cluster).   

 

2.3 Modeling Input Parameters 
 

Accurate input parameter modeling requires knowledge 

of application semantics. In the spirit of our application-

agnostic approach, we simplify the modeling of input 

parameters by reducing input parameter modeling to a 

load specification task for the developer. The load is 

interpreted as linear, with higher values representing a 

greater input load on the application. 

In case load specification is infeasible (due to the 

complexity of the application input data semantics), we 

consider the execution of an application with a different 

input data set as a “new application”, which must then 

undergo independent profiling and modeling.  

 

3. Application Resource Usage Model  
 

In this Section, we present a model of application 

execution correlating with application resource usage 

characteristics. In constructing our model, we note that 

applications may utilize different types of resources (as 

elaborated in Section 2) and also demonstrate varied 

patterns of resource usage during their execution. 

Consequently, the execution time of each application is 

typically dependent on different sets of resources. To take 

this into account, we create application profiles to capture 

and predict execution time for a specific application. As a 

first step assumption, we suppose that the influence of the 

resource properties of the target execution environment to 

the application execution time takes a product form, in 

which each term represents the influence of one or more 

resource properties and is independent of other terms. It is 

therefore represented, as follows: 

∏
−

=

=
1

0

m

i

iexec CT ,    (1) 

where execT  is the execution time, iC  is the i-th 

contribution by one or more resources, and m is the 

number of contribution terms. The term iC  may contain 

resource parameters such as CPU clock frequency, L2 

cache size, FSB bandwidth and disk I/O bandwidth, as 

mentioned in Section 2. 

In this paper, we consider and focus on two types of 

independent contributions: the parallelism of task 

execution and CPU’s performance factor, which is 

currently just it’s clock frequency.
2
 In considering parallel 

task execution on more than one node, we further assume 

that all nodes are homogeneous in terms of their resource 

properties.
3
 Further, the model more naturally addresses 

applications whose resource consumptions are more or 

less consistent across time. If this is not the case, the 

model would still identify all the dominant resource usage 

factors, but would however be unable to capture the 

dynamics of such usage over the duration of the 

application execution. We use the following simple form 

of the parallelism term, which reasonably assumes that the 

execution time is in inverse proportion to the degree of 

parallelism, or 

paraPC 100 αα += ,   (2) 

where paraP  is the degree of parallelism such as the 

number of processors available to the application, 0α  and 

1α  indicate the application’s characteristics and will 

differ for each application. The first term 0α  indicates the 

constant contribution such as execution overhead.  

To include the CPU performance contribution, we use 

the following simple form: 

clockPC 101 ββ += ,   (3) 

where clockP  is the CPU clock frequency, 0β  and 1β  

indicate the application’s characteristics related to the 

CPU performance as well as Equation (2).  

After expanding the product form of Equation (1), we 

have a simple summation form, as follows: 

 

 

(4) 

 

which is a linear form of explanatory variables (basic 

terms for regression analysis) multiplied by application 

                                                 
2

 Please note that while a more exhaustive model would 

consider additional resource properties (e.g., memory size) or 

more complex dependencies (e.g., quadratic instead of linear), 

our primary goal in this paper is to introduce our general 

technique for resource usage modeling and prediction. 

Therefore, we chose a minimal model to simplify presentation. 

We minimize the effect of these parameters by making them 

invariable in all experiments. 
3
 While some cluster environments would consist of a set of 

machines of almost similar configuration, there may be cases 

where this assumption may not hold. Relaxing this assumption, 

however, substantially complicates the modeling mechanism.  
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profile parameters that define application characteristics. 

We can denote it by its following general representation: 

∑
=

+=
n

i

iiexec yT
1

0 θθ    (5) 

iθ  is the i-th application profile parameter which are 

values reflecting constant contributions related to a 

particular application and type of resource and iy  is the i-

th explanatory variable which is a function of static 

resource properties (e.g. clock speed) and the resource 

competition status.   

Equation (5) thus reduces the prediction task to a 

problem of estimating profile parameters. We apply 

regression analysis to solve the problem. While the 

general technique we use, including the error analysis, is 

detailed in [8], we summarize key steps of the estimation 

process here. The observation at time t=k includes the 

monitored execution time 
][k

x  on the static resource set: 

 

      (6) 

 

After obtaining N sets of observations, Equation (5) is 

now represented with an error term, as follows: 

 

      (7) 

where  

 

 

 

 

 

and ε  indicates errors with zero mean. The error term 

may include observation errors and model inaccuracy. We 

then apply regression analysis to minimize the mean 

square errors of ε  to estimate the application profile 

parameters, as follows: 

 

      (8) 
 

Note that the matrixes H and x grow in size for more 

observations, however, the matrixes HH T
 and xH

T
 

are of the fixed size of )1()1( +×+ nn  and 1)1( ×+n , 

respectively. As a result, we do not need additional 

storage to maintain the observations in general. It should 

be also noted that the matrix HH T
 must have a valid 

inverse matrix to obtain a solution to the above equation. 

Thus, at least n+1 sets of independent observation data 

are required for realizing a model of the application. For 

reliable estimation, more than n+1 observation must be 

maintained so as to decrease errors of observation. 

 

 

4. Monitoring and Prediction 
 

For profiling applications, we have developed two 

software programs: (1) a monitoring program (called 

amon) that runs on each compute node and reports the 

execution time observed for any application with 

appropriate values of explanatory variables every time it 

detects completion of the application’s execution; and (2) 

a prediction program (called aprof) that runs on a server 

node and receives the reports from the monitoring 

programs distributed over the compute nodes. It then 

maintains the fixed-size matrixes HH T
 and xH

T
 for 

each application in an incremental manner. For example, 

each element ija  of HH T
 is updated, as follows: 

 

      (9) 

where 
][k

ija  is the element value ( nji ≤≤ ,0 ) at time 

t=k, 0]0[ =ija  at t=0, and 1][

0 =k
y . Elements of xH

T
 

are also calculated in an incremental manner without 

increasing the data size in the profiling program.  

After the profiling program receives sufficient number 

of independent observation results, that is, at least n+1 

sets of data, it can estimate and calculate the profile 

parameters by using Equation (8).  

Once the profile parameters for a certain application 

are estimated, then we can apply them to predict an 

execution time for a certain resource, or 

 

      (10) 

 

where iy  is the value of the i-th explanatory variable in 

the given resource set and iθ̂   is the i-th estimated profile 

parameter for the application. Thus, the prediction 

program not only estimates application profile parameters 

but also applies them to predict an execution time based 

on an explanatory variable set ( ],,[ 1 nyy K ). 

The amon and aprof were designed to run in a 

networked environment using a client/server architecture. 

We run one instance of aprof on the head node of the 

cluster, which is being profiled, to act as the server and 

run one instance of amon on each compute node of the 

cluster to act as clients. Due to our need to execute tests 

for a number of different nodes and for a range of CPU 

speeds (as will be explained in Section 5), it was 

necessary to automate the experiment executions. Various 

perl, bourne shell, and python based scripts were created 

to execute these simulations automatically. The basic 

functionality of these scripts is to gather the results in the 

form of amon output and turn them into aprof compatible 

prediction input to later compute the predictions that will 

prove the accuracy of our model.  
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5. Experiments and Results 
 

Theoretically, by adding more processors to a 

simulation one could assume that a scientific application 

could run faster. This assumption is challenged by the 

existence of a predicted point on the performance curve 

where the running time of the application will worsen as 

more processors are added to the system (i.e. the 

saturation point). Several computational variables (e.g. 

clock speed of the processor, processor load, number of 

compute nodes, memory, network latency, network 

bandwidth, communication overhead) determine the 

execution time. In this section, we present a number of 

experiments that help us analyze the behavior of WRF by 

modifying two of the resource parameters, namely, 

processor load and number of compute nodes.  

To limit the number of concurrent changing variables, 

we assume that the execution time of a forecast simulation 

is based only on changes in clock speed and number of 

compute nodes. For this, we have kept the effect of other 

parameters such as memory minimized by making sure 

that the value of the parameter either does not change or is 

above an upper bound on the observed and target 

platforms. The experiments were conducted using two 

compute clusters located at Florida International 

University. The first cluster is called GCB. This cluster is 

based on the NPACI Rocks Linux distribution for 

compute clusters, version 4.0. The cluster contains 8 

nodes where each node contains two 32-bit x86 Intel 

based CPUs, 1GB of main memory and uses a gigabit 

network connection. The second cluster is called Mind. 

Mind is also operating on Rocks version 4.0. The cluster 

consists of 15 nodes, each containing dual Xeon 3.6GHz 

processors and 2GB of main memory. They are also 

connected through a gigabit network connection.  

The WRF application running in a cluster environment 

is capable of distributing the domain data points of a 

forecast simulation into optimal size; this is called optimal 

domain decomposition and is executed by WRF 

communication RSL [9] layer. The code uses MPI [10] 

communication subroutines for inter node communication, 

and OpenMP [ 11 ] for intra node, inter processor 

communication. These subroutines enable the program to 

distribute the data and computational load among the 

nodes of the cluster and the processors inside each node, 

respectively. For the purpose of these experiments we 

have used a small domain configuration to minimize the 

size of our cases to match the size of our clusters’ 

computational power, while the effect of other resources 

(e.g., memory size) will be minimal. As suggested by 

meteorologists, we used a 75 by 75 domain decomposition 

with 4km resolution, which contains 5625 grid points.  

The approach to the experiments was to benchmark the 

clusters by running experiments on different numbers of 

available compute nodes as well as different effective 

processing power. We employed three tools to assist us in 

our experiments. To limit the effective clock speed of the 

compute nodes, the open source CPUlimit [12] tool was 

used. The other two tools, mentioned in Section 4, are, 

amon and aprof. Amon was used to output run-related 

resource-consumption statistics of WRF simulation 

processes. Aprof was used for both receiving resource-

usage characteristics of the WRF simulations and 

predicting the execution time for each of the simulations, 

based on amon output. The percentage values used for the 

CPU bindings were 100 (full utilization), 80, 60, 40, 30, 

20, and 10 percent. All possible number of compute node 

utilized (i.e. from one to seven in GCB and from one to 15 

in Mind). For example, if the experiment being conducted 

was 80-percent CPU bound then CPUlimit was run in 

every node that was part of the experiment using 80 as the 

“limit” parameter and wrf_arw_DM.exe as targeted 

process. The following figures show the results.  
 

 
Fig. 1. The execution times of WRF on GCB. 

 
Fig. 2. The execution times of WRF on Mind. 

Fig. 1 and Fig. 2 illustrate the curve obtained from 

limiting the processor power for the same WRF forecast 

simulation for different combinations of compute nodes 

and clock speeds on GCB and Mind, respectively. The 

performance decreases with less CPU power, but not 

linearly. Fig. 3 illustrates the relationship between the 
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inverse of the available CPU clock (i.e. CPU utilization) 

and the execution time, ranging from 2 to 15 nodes for 

Mind’s benchmark data. In the case of the inverse of the 

CPU speed, the experiments confirm our assumptions 

about the linear behavior that our resource usage model 

captures in Equation (3). We obtained a similar linear 

behavior in the case of the inverse of the number of nodes 

(not shown for the sake of brevity) and the same 

characteristics were observed in GCB’s output. 
 

 
Fig. 3. The execution times plotted based on the inverse clock speed on 

Mind demonstrates a linear performance curve. 

 

6. Model Validation  
 

To validate our experiments and results, we used aprof. 

The mathematical model implemented in aprof is based 

on the fact that execution time decreases linearly along 

with the inverse of total computational power (tcp). 

Where tcp is equal to the product of clock speed and 

number-of-nodes. The amon results obtained from the 

previously exposed benchmarks were used as input data 

for the aprof program to predict different execution times 

of a WRF execution and calculate the accuracy of the 

prediction. 

The model was first validated for within-a-cluster 

predictions on each of the two clusters. For each series of 

benchmarks (i.e. CPU-utilization and number-of-nodes 

combination) the actual execution time was compared to 

the predicted execution time. In GCB, the observed 

within-a-cluster fractional error rate was 5.34%. The 

median error rate was 5.86%. For Mind, the fractional 

error rate was 5.66% and the median 3.80%. Note that the 

prediction model uses the set of benchmark data (i.e. input 

data) as a database for improvement of accuracy in its 

predictions and as seen in the next prediction results, the 

greater the size of this data set the smaller the average 

fractional error. 

For the across-clusters predictions, we used the same 

paradigm, this time using the statistics from GCB 

simulations (as inputs to aprof) to predict the execution 

time in Mind, and vice versa. When using GCB’s statistics 

to predict Mind’s execution time, we observed an average 

fractional error of 9.97% and a median of 5.86%. When 

using Mind’s input to predict GCB’s execution time, an 

average of 5.83% fractional error and a median of 4.13% 

were observed. 

Our results demonstrate the validity of our model, 

despite its simplicity. Further research and validation will 

optimize our model, to account for differences in 

architecture (32- vs. 64-bit), and many other variables that 

might affect the accuracy of the model predictions. We 

believe that by having conducted these interpolation and 

extrapolation prediction scenarios we are able to show the 

potential behavior of WRF based on CPU load and 

number of compute nodes for future Grid enablement of 

this application.   

 
Fig. 4. The actual and estimated execution times for Mind's predictions. 

 

Fig. 5. Across-cluster predictions of GCB's estimated time versus actual 

time, using Mind's aprof input. 

Fig. 4 portrays the actual values versus estimated 

values of the Mind benchmark series. It is possible to see 

that most of the high-error values occur for low number of 

nodes, which is not considered important in a cluster 

environment. Fig. 5 shows similar observations when 

comparing actual times versus aprof-estimated execution 
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times when using GCB’s input to predict Mind’s execution 

times.  

Since our testbeds were using different architectures, 

we based our prediction tests and findings on number-of-

nodes, rather than number-of-processors. Mind is using 

64-bit Xeon processors with hyperthreading support, 

while GCB is using 32-bit Pentium 4 processors. For the 

purpose of the experiments, the logical (hyperthreading) 

processor was disabled on Mind. The fact that our results 

were as good as they are despite using different 

architectures reinforces the strength of our model. 

 

7. Related Work 
 

Extensive research has been carried out in the area of 

resource usage prediction. While a large section of this 

work focuses on platform-specific approaches [1,2,3,4,5], 

our work enables resource usage prediction on previously 

“unseen” target environments.  

In the domain of Web services, the work defined in 

[13] proposes a method for online profiling of component-

based services for predicting the response time. This work 

models each service individually in terms of its CPU 

utilization, CPU utilization for an RMI (Remote Method 

Invocation) operation, and network delay. Adapting our 

approach to multi-component and multi-platform web 

services can use the component-based profiling techniques 

proposed in the above work. However, a key general 

difference is that this approach is application-domain 

specific whereas the emphasis of our approach is to be 

application agnostic.  

Predictions of finer granularity jobs, which may be 

useful for scheduling interactive applications, include a 

method to predict the running times of tasks [14]. The 

prediction method is based on the AR(16) model for CPU 

load estimations [ 15 ]. The work in [ 16 ] proposes an 

improvement on the AR(16) linear time-series model. 

Wolski et al. have focused on making short and medium 

term CPU load predictions [17]. Gibbons has proposed 

prediction methods targeting more general applications in 

which execution time predictions are obtained from the 

run times of similar applications [18]. He used templates 

to group similar applications. In later approaches [19, 20, 

21], data mining techniques were used to search for good 

templates for a specific application. The PACE system  

[22] includes a method for predicting execution time and 

network usage, among others. Their method is based on 

both source code analysis and benchmarking analysis, 

quite opposed to the application-semantics agnostic 

philosophy of our work. In addition, one of the main 

differences of our modeling approach from most of the 

above is that our modeling framework allows for easy 

correlation of different resource configurations in 

conjunction with accounting for execution scale. 

While there is abundant research on resource usage 

prediction in general, very few of these address 

performance prediction across different hardware 

configurations. Dimemas [23] is a performance prediction 

simulator which targets MPI applications. Performance 

prediction can be based on previous runs on different 

platform configurations. Different from this work our 

approach focuses on online prediction. Yang et al. 

propose cross-platform prediction by combining the 

application’s performance in a reference system and the 

relative performance between the two systems derived 

from a partial execution on the target platform [6]. In their 

technique, the source code of an application is analyzed to 

identify the major time step loops and the source code is 

then modified to include the API for the partial execution 

measurements. Our work differs from this work in several 

respects. First, our approach, being application agnostic, 

is free from source-code instrumentation. Second, our 

approach does not require a sample execution on the 

target before prediction. Third, our approach is able to 

model execution scale, thereby also addressing distributed 

applications.  

Marin and Mellor-Crummey [7] present a different 

approach for cross-platform prediction of application 

execution time. Their approach consists of statically 

analyzing the application binary code to identify the 

control flow graph for each routine as well as the loops 

contained. A dynamic analysis then obtains the frequency 

a routine is entered. Binary rewriting is used to augment 

an application to monitor and log information. Platform 

native instructions (e.g. SPARC instructions) are then 

translated into a set of generic RISC instructions. While 

this approach is more powerful than our proposed 

approach since it can address multiple architectures, this 

technique is restricted to predicting for single-node 

application executions alone. Our work allows prediction 

in a multi-cluster Grid computing environment. 

 

8. Conclusion and Future Work 
 

We have proposed a new approach for modeling the 

resource usage and execution time of a distributed 

application. The mathematical model we have proposed is 

a cross-platform model and can be constructed using 

observations external to the target application, requiring 

no inspection or modification of the application source or 

binary code. Experimental results using WRF executions 

on two clusters with different hardware configurations 

have demonstrated the efficacy of our approach for 

predicting the execution time of a long-running scientific 

application. Our cross-platform validation tests have 

demonstrated good accuracy (prediction errors within 

10%), even with substantially different systems, using 

only two parameters of the execution environment, the 

number of nodes and the CPU clock speed. 
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Future work will include applying our model to other 

distributed applications as well as extending our model to 

include more resource parameters/contributors, such as 

cache/memory size, network bandwidth, and storage 

bandwidth. While we minimized the effect of these 

parameters by making them invariable in our current 

system, it is indeed important to validate our general 

approach to modeling resource usage on these additional 

non-trivial system resource properties. To target general 

Grid computing environments, we will also work on 

extending our parallelism model to address execution 

environments with heterogeneous resources.  With regards 

to WRF in particular, we have come one step closer to 

devising a complete solution to our goal of higher-

resolution weather prediction.  
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